New Ranks for Even-Order Tensors and Their Applications in Low-Rank Tensor Optimization
نویسندگان
چکیده
In this paper, we propose three new tensor decompositions for even-order tensors corresponding respectively to the rank-one decompositions of some unfolded matrices. Consequently such new decompositions lead to three new notions of (even-order) tensor ranks, to be called the M-rank, the symmetric M-rank, and the strongly symmetric M-rank in this paper. We discuss the bounds between these new tensor ranks and the CP(CANDECOMP/PARAFAC)-rank and the symmetric CP-rank of an even-order tensor. In particular, we show: (1) these newly defined ranks actually coincide with each other if the even-order tensor in question is super-symmetric; (2) the CP-rank and symmetric CP-rank for a fourth-order tensor can be both lower and upper bounded (up to a constant factor) by the corresponding M-rank. Since the M-rank is much easier to compute than the CP-rank, we can replace the CP-rank by the M-rank in the low-CP-rank tensor recovery model. Numerical results on both synthetic data and real data from colored video completion and decomposition problems show that the M-rank is indeed an effective and easy computable approximation of the CP-rank in the context of low-rank tensor recovery.
منابع مشابه
Low-Rank Approximation and Completion of Positive Tensors
Unlike the matrix case, computing low-rank approximations of tensors is NP-hard and numerically ill-posed in general. Even the best rank-1 approximation of a tensor is NP-hard. In this paper, we use convex optimization to develop polynomial-time algorithms for low-rank approximation and completion of positive tensors. Our approach is to use algebraic topology to define a new (numerically well-p...
متن کاملOrthogonal Low Rank Tensor Approximation: Alternating Least Squares Method and Its Global Convergence
With the notable exceptions of two cases — that tensors of order 2, namely, matrices, always have best approximations of arbitrary low ranks and that tensors of any order always have the best rank-one approximation, it is known that high-order tensors may fail to have best low rank approximations. When the condition of orthogonality is imposed, even under the modest assumption that only one set...
متن کاملOrthogonal Rank-two Tensor Approximation: a Modified High-order Power Method and Its Convergence Analysis
With the notable exceptions that tensors of order 2, that is, matrices always have best approximations of arbitrary low ranks and that tensors of any order always have the best rank-one approximation, it is known that high-order tensors can fail to have best low rank approximations. When the condition of orthogonality is imposed, even at the most general case that only one pair of components in...
متن کاملStructure-Preserving Low Multilinear Rank Approximation of Antisymmetric Tensors
This paper is concerned with low multilinear rank approximations to antisymmetric tensors, that is, multivariate arrays for which the entries change sign when permuting pairs of indices. We show which ranks can be attained by an antisymmetric tensor and discuss the adaption of existing approximation algorithms to preserve antisymmetry, most notably a Jacobi algorithm. Particular attention is pa...
متن کاملTensor Rank and the Ill-Posedness of the Best Low-Rank Approximation Problem
There has been continued interest in seeking a theorem describing optimal low-rank approximations to tensors of order 3 or higher, that parallels the Eckart–Young theorem for matrices. In this paper, we argue that the naive approach to this problem is doomed to failure because, unlike matrices, tensors of order 3 or higher can fail to have best rank-r approximations. The phenomenon is much more...
متن کامل